916 research outputs found

    African Olive (Olea europaea subsp. cuspidata) as an environmental weed in eastern Australia: a review

    Get PDF
    African Olive, Olea europaea subsp. cuspidata (Wall. ex G.Don) Cif. (family Oleaceae) is a dense-crowned tree introduced into Australia for horticulture in the mid 19th century. In recent decades, African Olive has become an aggressive woody weed, capable of forming a dense and permanent canopy in a wide range of vegetation types in south-west Sydney and beyond. Characteristics of African Olive invasion in south-west Sydney, and its seed dispersal by frugivorous birds are consistent with experience from Norfolk Island and Hawaii. We use records and aerial photographs from Mount Annan Botanic Garden and other bushland areas in south-west Sydney to describe the invasion stages and impacts of African Olive. The capacity for African Olive to establish in both temperate and subtropical zones, underlie the potential for spread well beyond current distribution in New South Wales. Research is now required to further develop control techniques and ecological restoration strategies for areas of heavy African Olive infestation. Mapping of current locations and a coordinated control strategy for African Olive is required to prevent future permanent loss of native plant diversity

    A new stall-onset criterion for low speed dynamic-stall

    Get PDF
    The Beddoes/Leishman dynamic-stall model has become one of the most popular for the provision of unsteady aerofoil data embedded in much larger codes. The underlying modeling philosophy was that it should be based on the best understanding, or description, of the associated physical phenomena. Even though the model was guided by the flow physics, it requires significant empirical inputs in the form of measured coefficients and constants. Beddoes provided these for a Mach number range of 0.3–0.8. This paper considers one such input for a Mach number of 0.12, where, from the Glasgow data, it is shown that the current stall-onset criterion, and subsequent adjustments, yield problematic results. A new stall criterion is proposed and developed in the best traditions of the model. It is shown to be very capable of reconstructing the Glasgow's data for stall onset both the ramp-up and oscillatory tests

    Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few Queries

    Full text link
    The stochastic matching problem deals with finding a maximum matching in a graph whose edges are unknown but can be accessed via queries. This is a special case of stochastic kk-set packing, where the problem is to find a maximum packing of sets, each of which exists with some probability. In this paper, we provide edge and set query algorithms for these two problems, respectively, that provably achieve some fraction of the omniscient optimal solution. Our main theoretical result for the stochastic matching (i.e., 22-set packing) problem is the design of an \emph{adaptive} algorithm that queries only a constant number of edges per vertex and achieves a (1−ϔ)(1-\epsilon) fraction of the omniscient optimal solution, for an arbitrarily small Ï”>0\epsilon>0. Moreover, this adaptive algorithm performs the queries in only a constant number of rounds. We complement this result with a \emph{non-adaptive} (i.e., one round of queries) algorithm that achieves a (0.5−ϔ)(0.5 - \epsilon) fraction of the omniscient optimum. We also extend both our results to stochastic kk-set packing by designing an adaptive algorithm that achieves a (2k−ϔ)(\frac{2}{k} - \epsilon) fraction of the omniscient optimal solution, again with only O(1)O(1) queries per element. This guarantee is close to the best known polynomial-time approximation ratio of 3k+1−ϔ\frac{3}{k+1} -\epsilon for the \emph{deterministic} kk-set packing problem [Furer and Yu, 2013] We empirically explore the application of (adaptations of) these algorithms to the kidney exchange problem, where patients with end-stage renal failure swap willing but incompatible donors. We show on both generated data and on real data from the first 169 match runs of the UNOS nationwide kidney exchange that even a very small number of non-adaptive edge queries per vertex results in large gains in expected successful matches

    Large scale prop-fan structural design study. Volume 1: Initial concepts

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2

    Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice

    Full text link
    Using small-angle neutron scattering, we investigated the behavior of a metastable vortex lattice state in MgB2 as it is driven towards equilibrium by an AC magnetic field. This shows an activated behavior, where the AC field amplitude and cycle count are equivalent to, respectively, an effective "temperature" and "time". The activation barrier increases as the metastable state is suppressed, corresponding to an aging of the vortex lattice. Furthermore, we find a cross-over from a partial to a complete suppression of metastable domains depending on the AC field amplitude, which may empirically be described by a single free parameter. This represents a novel kind of collective vortex behavior, most likely governed by the nucleation and growth of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Topological energy barrier for skyrmion lattice formation in MnSi

    Full text link
    We report the direct measurement of the topological skyrmion energy barrier through a hysteresis of the skyrmion lattice in the chiral magnet MnSi. Measurements were made using small-angle neutron scattering with a custom-built resistive coil to allow for high-precision minor hysteresis loops. The experimental data was analyzed using an adapted Preisach model to quantify the energy barrier for skyrmion formation and corroborated by the minimum-energy path analysis based on atomistic spin simulations. We reveal that the skyrmion lattice in MnSi forms from the conical phase progressively in small domains, each of which consisting of hundreds of skyrmions, and with an activation barrier of several eV.Comment: Final accepted versio

    2D and 3D gust response using a prescribed velocity method in viscous flows

    Get PDF
    • 

    corecore